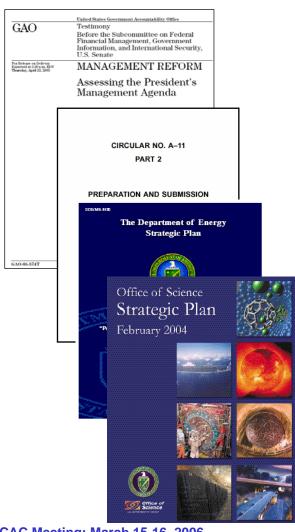


U.S. Department of Energy's Office of Science

Advanced Scientific Computing Research Program

ASCR Performance Measures

Thomas Ndousse


tndousse@er.doe.gov

301-903-9960

The Need for Performance Measures

Advanced Scientific Computing Research Program

- Government Performance and Result Act (GPRA) - (1993)
 - Requires agencies to develop a strategic plan, annual performance plan, and annual accountability report
- OMB criteria for assessing R&D investment
 - Requires agencies with research mission to use Performance Assessment Rating Tool (PART) to appraise for quality, relevance, and performance

PART Activities

Advanced Scientific Computing Research Program

- Activities in support of PART
 - Advisory committees
 - Committee of visitors
 - Peer-review of laboratory and university funded projects
 - Lehman reviews of major facilities
 - Strategic plans
 - Periodic external reviews of facilities and R&D programs
 - Annual progress reports for multi-year projects
 - Staff performance reviews
 - Workshops and conferences

OMB R&D Investment Criteria

Advanced Scientific Computing Research Program

Assessment Areas

- Quality Largely determined by Independent Merit Reviews
- Relevance Determined by importance to a Presidential priority
- Performance Efficiency/effectiveness measures

Elements of PART

- Program purpose and design
- Strategic planning
- Program management
- Program results

Performance Tracking and Reporting

- Quarterly performance measure reporting: DOE Joule system
- Annual performance measure reporting: OMB budget process

Annual Performance Measures for PART

Advanced Scientific Computing Research Program

- Capability Computing at NERSC (weight: 50%)
 - Focus usage of the primary supercomputer at the NERSC on capability computing (Percentage (40%) of the computing time available at NERSC used for computations that require at least 1/8 of the total resource)
- Computational Science Capabilities (weight: 50%)
 - Improve computational science capabilities Increase annual percentage in computational effectiveness (either by simulating the same problem in less time or simulating a larger problem in the same time)

Capability Computing Measures at NERSC

Advanced Scientific Computing Research Program

Primary NERC Supercomputer

- IMB SP (Seaborg)
- 380 Compute Nodes
- 6080 processors

Performance Measure Process

- Establish IBM SP (Seaborg) as Primary NERSC supercomputer
- Scale system software to allow applications to use 1/8 the total processors (512 processor in FY04 and 678 processors in FY06)
- Provide PIs with incentives to scale existing code to use large number of processors
- Collect NERSC usage statistics

Year	# Processors	Target 1/8 of Processors	Target % of Usage	Actual % usage by1/8 Apps
2003	Base line	-	-	-
2004	4,096	512	50%	47.7%
2005	4,096	512	50%	67.5%
2006	6,080	768	40%	50.3% through Feb 2006

Capability Computing Measure at NERSC

Advanced Scientific Computing Research Program

Reflections on Capability Computing Measure

- A significant percentage of DOE science applications can use 1,000 CPUs or more and still do effective science.
- Scaling science applications to use 1,000 or more CPUs effectively requires innovative scheduling incentives, allocation discount, and intensive consulting support.
- High impact science applications that do not easily scale are adversely impacted by those that do.
- DOE funded the NCSa and NCSb systems to address jobs that run at smaller scale.
- Long running jobs may adversely impact capability measure.
- Utilization-based metric may not adequately capture the quality and science productivity on **Seaborg**.

Computational Science Capabilities Measure

Advanced Scientific Computing Research Program

Performance Measure

Time-to-solution

Performance Measure Process

- Identify a target set code developed by ASCR PIs and a target system on which to run the code.
- Record performance of the target code at beginning of the fiscal year on the target system.
- Tune/scale the code during the year using advanced coding techniques and or new mathematical algorithms developed during year.
- Execute the new code on target system with the same configuration at the end of the fiscal year.

Success

The annual improvement in the code, when measured in time to solution, must be 50%.

PART Benefits and Challenges

Advanced Scientific Computing Research Program

Benefits

- Encourages dialog with OMB
- Forces evaluation of program progress and effectiveness
- Enables programs to set higher performance goals
- Improves program management and strategic planning

Challenges

- Quantifiable and sensible performance measures of R&D activities are difficult to define
- Scientific discoveries are unpredictable